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SUMMARY

We sequenced the genome of the highly heterozygous almond Prunus dulcis cv. Texas combining short-

and long-read sequencing. We obtained a genome assembly totaling 227.6 Mb of the estimated almond

genome size of 238 Mb, of which 91% is anchored to eight pseudomolecules corresponding to its haploid

chromosome complement, and annotated 27 969 protein-coding genes and 6747 non-coding transcripts. By

phylogenomic comparison with the genomes of 16 additional close and distant species we estimated that

almond and peach (Prunus persica) diverged around 5.88 million years ago. These two genomes are highly

syntenic and show a high degree of sequence conservation (20 nucleotide substitutions per kb). However,

they also exhibit a high number of presence/absence variants, many attributable to the movement of trans-

posable elements (TEs). Transposable elements have generated an important number of presence/absence

variants between almond and peach, and we show that the recent history of TE movement seems markedly

different between them. Transposable elements may also be at the origin of important phenotypic differ-

ences between both species, and in particular for the sweet kernel phenotype, a key agronomic and domes-

tication character for almond. Here we show that in sweet almond cultivars, highly methylated TE
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insertions surround a gene involved in the biosynthesis of amygdalin, whose reduced expression has been

correlated with the sweet almond phenotype. Altogether, our results suggest a key role of TEs in the recent

history and diversification of almond and its close relative peach.

Keywords: Prunus dulcis, Prunus persica, genome sequence, variability, divergence, indels, transposable

elements, crop evolution, seed bitterness.

INTRODUCTION

Almond, Prunus dulcis (Miller) D.A. Webb (syn. Prunus

amygdalus Batsch), is a rosaceous tree species cultivated

for its seeds; it has a diploid (2n = 2x = 16) and compact

genome (about 300 Mbp) (Baird et al., 1994). The genus

Prunus comprises a group of approximately 200 species,

some of which, such as the stone fruits (peach, apricot,

cherry and plum) and almond, have high economic value

(Aranzana et al., 2019). The high level of genomic resem-

blance and synteny among the species of this genus (Dir-

lewanger et al., 2004) enables production of hybrids that

are sometimes fertile.

Humans used almond as a food long before the advent

of agriculture, and the oldest remains have been found in

Israel, dating from 19 000 years ago (Kislev et al., 1992),

although its domestication probably occurred 14 000 years

later (Spiegel-Roy, 1976). The origin of the almond tree is

not well established; its closest wild relatives live in central

and western Asia, stretching from the Himalayas to the

eastern Mediterranean Basin (Yazbek and Al-Zein, 2014).

[Correction added on 10 August 2020, after first online

publication: the publication year for the references from

Soderlund et al. till Zhang SD et al. has been wrongly

linked originally and now it is corrected throughout the

text.] Based on the distribution of the cultivated species,

two alternative hypotheses place the domestication site of

almond in the Levant (Browicz and Zohary, 1996) or in cen-

tral Asia (Ladizinsky, 1999). Diamond (1997) proposed

almond as an example of simple domestication, where a

dominant mutation at a single gene conferring a sweet

taste to the otherwise bitter and toxic kernel would result

in an edible and cultivable crop. This gene, sweet kernel

Sk/sk, was initially described by Heppner (1923) and later

mapped to the central region of chromosome 5 (S�anchez-

P�erez et al., 2007); it has recently been proposed to corre-

spond to a basic helix–loop–helix (bHLH) transcription fac-

tor (S�anchez-P�erez et al., 2019). The closest relatives of

almond are within the subgenus Amygdalus, encompass-

ing peach [Prunus persica (L.) Batsch] and a group of 25

wild species (Yazbek and Al-Zein, 2014). Peach and almond

hybrids are fertile. In fact, peach was proposed by Darwin

(1868) as a possible direct derivative of almond with a fle-

shy, non-dehiscent and juicy mesocarp. [Correction added

on 10 August 2020, after first online publication: the publi-

cation year for the references Darwin, Kester et al. and

Wickson has been wrongly linked originally and now it is

corrected throughout the text and in reference list.] How-

ever, molecular phylogenetics has identified a clear separa-

tion between peach and almond consistent with their

geographical origin and distribution: peach and its closest

relatives are native to China and eastern Asia, whereas

almond and its wild relatives are native to central and

western Asia (Delplancke et al., 2016).

The genome sequences of some Prunus species are

available, including the high-quality genome of peach

(Verde et al., 2013) and those of sweet cherry (Prunus

avium L.) (Shirasawa et al., 2017), mume (Prunus mume

L.), a relative of apricot (Zhang et al., 2012), and Prunus

yedoensis, a wild cherry tree (Baek et al., 2018), the latter

two used for ornamental purposes. The genome sequence

of almond cv. Lauranne has been very recently added

(S�anchez-P�erez et al., 2019). In this paper, we present the

whole genome sequence of almond cv. Texas, a self-in-

compatible and highly heterozygous genotype that was

obtained in the USA from materials imported from west-

ern Europe. Texas (also called Texas Prolific and Mission)

was bred at Houston, Texas, USA, as a seedling of French

cultivar Languedoc (Wickson, 1910), and became one of

the leading cultivars in California in the twentieth century

along with ‘Nonpareil’ (Kester et al., 1991). Texas was also

one of the parents, the other was peach cv. Earlygold, of

the interspecific progeny used for the construction of the

reference linkage map of Prunus (Joobeur et al., 1998).

We also compared the Texas almond genome sequence

with other sequenced genomes, including that of its close

relative peach, and found that, in addition to other

aspects of diversity between these genomes already

reported (Yu et al., 2018; Velasco et al., 2016), transpos-

able elements (TEs) played a key role in their recent diver-

sification.

RESULTS

Texas almond sequence assembly, annotation and

comparison with the linkage map and the peach sequence

A total of 138.6 Gb of Illumina (>5009 coverage) and

10.2 Gb (379) of Oxford Nanopore Technologies (ONT;

score ≥ 7.0 and a read N50 length of 7.3 kb) sequence were

produced (Table S1 in the online Supporting Information).

By analyzing k-mer frequency, the lower bound for
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genome size was estimated to be 238 Mb (Figure S1). We

collapsed the assembly into a haploid representation and

anchored it to eight pseudomolecules, the number of the

haploid almond chromosome complement. The final

assembly, P. dulcis Texas v.2.0 (also known as pdulcis26)

totals 227.6 Mb (91.5% of which is anchored to the eight

pseudomolecules) and has a contig and scaffold N50s of

103.9 and 381.5 kb, respectively (Table 1). The complete-

ness of the assembly as determined by BUSCO analysis is

96.4%: 95.4% complete (89.4% unique and 6.0% dupli-

cated), 1.0% fragmented and 3.6% missing BUSCOs. k-mer

analysis confirmed the BUSCO results (Figure S1).

We annotated a total of 27 969 protein-coding genes that

produce 34 039 transcripts (1.22 transcripts per gene) and

encode for 32 559 unique protein products (Table 1). We

were able to assign some type of functional annotation to

92% of them. In addition, we annotated 6747 non-coding

transcripts, of which 3590 and 3153 are long and short

non-coding RNA genes, respectively. Most of the main

assembly and annotation parameters of the Texas genome

presented here were similar to those obtained by S�anchez-

P�erez et al. (2019) on cv. Lauranne (see Table S2).

Out of the 1833 single nucleotide polymorphisms (SNPs)

that comprise the Texas 9 Earlygold (T9E) linkage map

(Donoso et al., 2015), 1609 (87.8%) mapped onto the

almond assembly with single high-quality hits (percentage

identity ≥ 90% and marker coverage ≥ 90%) (Table S3),

with 1597 (93.4%) mapping onto the anchored assembly.

Of the anchored SNPs, 1578 aligned with the pseudo-

molecules and were syntenic and collinear to the eight

chromosomes of peach. Only 19 SNPs had a different

order on the assembly, two of which mapped to a

pseudomolecule that was different from the linkage group

of the T9E map and 10 on an unassigned scaffold

(Table S3, Figure S2), which we attributed to contig

reordering or minor misassemblies. Similarly, we observed

high synteny and collinearity between the genome

sequence of peach v.2.0 a1 (Verde et al., 2017) and that of

the Texas almond generated here (Figure S3). A compar-

ison of physical versus genetic distances of the eight pseu-

domolecules is presented in Figure S4. Regions of low

recombination rates usually coincide with pericentromeric

regions and occurred at similar regions to those in the

peach genome (Verde et al., 2013).

Phylogenomic analysis

To shed light on the evolutionary history of the genome of

P. dulcis in the context of 16 other sequenced plant species

(Table S4), we generated the phylomes of almond and

peach, that is their complete collections of gene phyloge-

nies (see Experimental Procedures). These phylomes were

filtered to remove the gene trees containing proteins with

domains associated with transposons. After filtering, a

total of 18 475 and 20 812 gene trees were kept for almond

and peach, respectively. These filtered phylomes were

scanned to infer duplications and speciation events and

derive orthology and paralogy relationships from individ-

ual gene trees (Gabald�on, 2008). These analyses produced

a catalog of gene duplication events and phylogeny-based

homology relationships for genes in the 17 considered

species, which were used in subsequent analyses.

We concatenated the protein alignments of 262 genes

that had single-copy orthologs in all the 17 species consid-

ered to reconstruct a phylogeny of these species. The

resulting highly supported topology (Figure 1a) was con-

gruent with current views on plant phylogeny (Shaw and

Small, 2004) and results in P. dulcis and P. persica forming

a clade, to the exclusion of P. mume and P. avium (Bade-

nes and Parfitt, 1995; Scholz et al., 2013). The same topol-

ogy was obtained when all individual gene trees were

combined into a single species phylogeny by using a gene

tree parsimony approach. We estimated the divergence

times on this topology using a Bayesian relaxed molecular

clock approach. According to our results, P. dulcis

diverged from P. persica approximately 5.88 million years

ago (Mya), from P. mume 20.84 Mya and from P. avium

62.04 Mya (Figure 1a, Table S5).

We then calculated the duplication frequency (i.e. the

average number of duplications per gene) for each node of

the species tree, and observed a slightly high duplication

frequency (about 0.20; Figure 1b) at the common ancestor

of all Prunus species, which is supported by both almond

and peach phylomes. A functional analysis of protein fami-

lies duplicated at this branch shows enrichment of some

molecular functions such as methyltransferase activity,

ionotropic glutamate receptor activity, terpene synthase

Table 1 Texas genome assembly and annotation statistics

Assembly length 227.6 Mb
Contig N50 103.9 kb
Scaffold N50 381.5 kb
Pseudomolecule N50 24.8 Mb
Per cent anchored to pseudomolecules 91.47%
BUSCO complete genes 95.4%
BUSCO fragmented genes 1.0%
BUSCO missing genes 3.6%
Genomic GC content 37.65%
Number of protein-coding genes 27 969
Median gene length (bp) 2288
Number of transcripts 34 039
Number of unique protein products 32 559
Number of exons 184 149
Number of unique exons 148 374
Number of coding exons 140 538
Coding GC content 44.12%
Median intron length (bp) 171
Exons/transcript 5.41
Transcripts/gene 1.22
Multi-exonic transcripts 81%
Gene density (genes Mb–1) 123
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activity, oxidoreductase activity and transferase activity. In

addition, some biological processes were enriched:

response to auxin, metabolic process and oxidation–reduc-
tion process (Table S6).

Then we focused on duplications specific to almond or

peach, including large expansions. A total of 1175 (4.4%)

almond proteins and 831 (3.1%) peach proteins have an in-

paralog (a recent paralog resulting from a duplication that

specifically occurred in the almond and peach lineage,

respectively). These paralogs could be assigned to 542

almond-specific gene expansions and 367 peach-specific

gene expansions. In both almond and peach most expan-

sions [540 (99.6%) for almond; 363 (98.9%) for peach] have

a moderate size (two to five in-paralogs; Figure S5). Some

almond expansions of size two encode putative members

of the lignin biosynthesis pathway (Vanholme et al., 2010)

such as caffeic acid 3-O-methyltransferase (COMT; Prudu-

l26A009858P1-Prudul26A011895P1) and shikimate O-hy-

droxycinnamoyl transferase (HCT; Prudul26A003924P1-

Prudul26A028947P1, Prudul26A000852P1-Prudul26A0228

43P2). Interestingly, these genes have undergone parallel

duplications in P. persica, P. mume and P. avium that

occurred independently in the three species. In order to

check whether the almond species-specific duplications are

tandem or dispersed duplications we assessed whether

they were present in the same or different scaffolds, and if

present in the same scaffold we counted the number of

genes that are present between the resulting in-paralogs.

From the total number of species-specific paralogous pairs

or in-paralogs (732), the majority (384, 52%) were located

in the same scaffold, and 285 pairs (39%) were located in

close proximity, with fewer than 10 intervening genes. A

group of 87 (12%) paralogs were directly neighboring each

other, and most of them had functions associated with

stress responses.

We next analyzed protein gains and losses in the lin-

eages leading to almond and peach, as inferred from the

analysis of the gene trees in the phylome. When we ana-

lyzed the almond phylome, a total of 1471 proteins were

gained in almond and 1146 were lost in peach. For the

peach phylome we found that 1984 proteins were gained

in peach and 3157 were lost in almond. Functional analysis

shows that the proteins lost in almond with respect to

peach are enriched in functions related to serine-type

endopeptidase inhibitor activity, nutrient reservoir activity,

lipid transport, response to auxin, oxidation–reduction pro-

cess and ion transport. Conversely, genes lost in peach

with respect to almond are mainly enriched in functions

related to transferase activity, transcription and ATP syn-

thesis-coupled proton transport (Table S7).

Variability of almond cultivars

Read mapping rate, depth and genome coverage. Align-

ment of the 919 019 814 trimmed reads from the 10 re-se-

quenced almond cultivars (Table S8) to our reference

assembly resulted in mapping of 825 914 441 ‘clean’ reads

(after removal of unmapped reads, PCR duplicates and

reads with a mapping quality < 10) which corresponds to

an average mapping rate of 89.6% (Table S9). Nonpareil

and Vivot, and Falsa Barese and Genco showed the highest

(94%) and lowest (79%) mapping rate, respectively

(Table S9). Regarding sample depth and genome coverage,

an average read depth of 39.7 was detected for the 10 culti-

vars, whereas 96.7% of the assembly was covered by the

re-sequencing data on average. Marcona and Falsa Barese

had the highest (51.49) and lowest (27.79) read depth,

respectively (Table S9).

Variant calling and phylogenetic analysis. Genetic vari-

ability analysis resulted in the detection of 2 253 377

Figure 1. Species tree obtained from the concatenation of 262 widespread

single-gene families.

(a) Full species tree. All Prunus species are highlighted in pink. All bootstrap

values that are not maximal (bootstrap 100%) are indicated in red. Green

numbers correspond to the nodes in Table S4. Bars at the nodes indicate

the uncertainty around mean age estimates based on 95% credibility inter-

vals. Scale at the bottom shows the divergence time in Mya (million years

ago). Green dots represent selected calibration points.

(b) Zoom-in of the Prunus group. Numbers indicate the duplication ratio for

each branch calculated with the phylome of almond (red) and peach

(blue).[Colour figure can be viewed at wileyonlinelibrary.com]
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variants, of which 2 203 582 (87%) were SNPs and 330 795

(13%) were insertions/deletions (indels). Genome-wide dis-

tribution of SNPs and indels can be seen in Table S10.

Nonpareil had the highest number of SNPs and indels,

1 072 759 and 142 142, respectively, whereas Ripon had

the lowest number of SNPs and indels, 827 397 and

94 070, respectively. Average SNP density was calculated

as 6.2 SNPs per kb, whereas the average heterozygosity

for the 10 cultivars was 0.44% (Table S11). Our calculations

of SNP density and heterozygosity for almond are lower

than those recently published (a SNP density of 19.1 and

heterozygosity of 0.69; Yu et al., 2018). This discrepancy

could be attributable to the use of the peach genome as a

reference sequence during the variant calling in the pub-

lished study, a varietal panel of larger genetic diversity or

different filters and tools used for variant calling.

A graphical representation of SNP and indel distribution

in windows of 100 kbp showed a similar profile for most of

the almond cultivars analyzed (Figure S6). Nevertheless,

lower overall variant density was observed in certain culti-

vars such as Genco, Falsa Barese and Ripon, which we

attributed to the lower number of reads mapped in these

genotypes.

An analysis of deletions in the collection of almond culti-

vars is presented in Table S12. For small deletions (1–50 bp),

numbers were about half of those estimated for indels in

Table S10 (about 60 000 versus about 120 000 per cultivar),

as expected considering that only deletions and not inser-

tions are considered. On average, 27% of these deletions

overlapped with TEs. Considering large deletions (>50 bp),

we detected 1219 unique events, the majority of which fell

within the range 51–500 bp, with an average number of 88

deletions per cultivar. Marcona had the largest number of

deletions (219) whereas Ripon had the lowest number (12)

(Table S12). Five hundred and eighty-eight large deletions

(48.2% of the total) overlapped with TEs, with Nonpareil and

Ripon showing nearly 60% of overlap with TEs and Cristo-

morto with the lowest percentage of overlap (38.8%). For

deletions larger than 500 bp, almost all the events were

found to overlap with TEs (92.6% in the range 501–10 000

and 100% in the range 10 001–50 000; Table S12, Figure S7).

A SNP-based phylogenetic analysis grouped the almond

cultivars into two main clades where the first clade con-

tained Cristomorto, Falsa Barese and Genco while the sec-

ond clade is split into two subclades, the first containing

A€ı, Belle d’Aurons, Nonpareil and Ripon and the second

Desmayo largueta, Marcona and Vivot (Figure S8). This

phylogeny is in agreement with the geographical origin of

the analyzed cultivars, grouping the Italian cultivars, the

French and US cultivars and finally the Spanish cultivars in

the same clade. The fact that French and US cultivars are

clustered together agrees with the known origin of US

materials coming from French imported accessions (Kester

et al., 1991).

Indel variants between peach and almond and their rela-

tionship to TE sequences. To assess the structural vari-

ability between almond and peach genomes we aligned

almond genome contigs to the peach reference genome. A

total of 92.96% of the Texas almond assembly could be

aligned to the Lovell reference peach genome sequence

with an average identity of 95.59%, which increased to

97.99% (20 SNPs per kb) when only regions that align 1:1

are considered. We detected a total of 20 418 indel variants

accounting for 18 Mb of sequence, equivalent to 8% of the

almond genome (Table S13).

Re-sequencing data from the peach cv. Earlygold were

compared with the almond reference genome and dele-

tions were identified, as previously done with almond culti-

var re-sequencing data (Table S12). The average number

of deletions in almond cultivars compared with the almond

reference sequence was 62 238, whereas in Earlygold this

figure was more than double (126 137) (Table S12). How-

ever, when considering only deletions larger than 50 bp,

peach had almost 12 times more (1436 versus 120) than

almond.

Transposable element landscape

Using the REPET pipeline we annotated 38.21% of the

almond genome as TE-related sequences (Tables S14 and

S15). The distribution of TEs along almond pseudochromo-

somes shows an inverse correlation with respect to the

gene density, with TE-rich regions showing low gene den-

sity per chromosome, coinciding with pericentromeric

regions, and lower TE densities in the gene-rich chromoso-

mal arms (Figure 2a). The almond TE landscape was com-

pared with that of peach. For that purpose, we annotated

peach TEs with the same strategy and found very similar

results: 37.60% of TE content (Tables S14 and S15) and a

comparable TE and gene distribution to that of almond

chromosomes (Figure 2b).

In addition to the general TE annotation, we performed

a dedicated annotation of the long terminal repeat (LTR)

retrotransposons and miniature inverted-repeat transpos-

able elements (MITEs) in the almond and peach genomes.

A conservative search for LTR retrotransposons with a

well-preserved structure (i.e. presence of LTRs and coding

capacity for retrotransposon-related proteins) resulted in

the annotation of approximately 2200 elements in both

almond and peach (Table S16). Whenever possible, these

elements were classified as Copia or Gypsy (i.e. when cod-

ing regions for both integrase and reverse transcriptase

were detected, which allowed us to classify them) or

remained as unclassified LTR retrotransposons. Although

the content of these elements was similar in both gen-

omes, the number of LTR retrotransposons that remained

unclassified in almond was slightly higher. The distribution

of the almond and peach retrotransposons along chromo-

somes is also highly similar, with Gypsy elements showing

© 2019 The Authors.
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a tendency to concentrate in a central region of chromo-

somes, probably coinciding with the centromeric regions,

whereas Copia elements are more evenly distributed (Fig-

ure 2). A conservative search for MITEs with well-pre-

served Toll-interleukin like regions (TIRs) rendered 10 460

MITEs in almond and 8738 MITEs in peach (Table S16).

The distribution of these elements along chromosomes is

similar in peach and almond and follows that of Copia LTR

retrotransposons (Figure 2).

The LTR retrotransposon dynamics in almond and peach

To gain insight into the evolution of almond and peach

LTR retrotransposons, we grouped all almond and peach

elements into clusters showing sequence identity higher

than 80% along more than 80% of their length. Most of

the elements (66.2%) were grouped into clusters of at

least two elements. Two hundred and fifty-nine clusters

(81%) were mixed clusters and contained 93% of the

almond and peach clustered elements. An analysis of the

insertion times of these LTR retrotransposons shows that

the number of recent (≤5 Mya) LTR retrotransposons is

clearly higher in peach than in almond (Figure 3a). An

analysis of the insertion time distribution of individual

clusters within LTR retrotransposon families (belonging

to Gypsy and Copia superfamilies, or that are unclassi-

fied), shows that many of them contain insertions that

are younger in peach that in almond (Figure S9), sug-

gesting that peach has experienced higher LTR retro-

transposon activity after the evolutionary split of these

two species.

To further understand LTR retrotransposon dynamics

we analyzed the prevalence in the species of the LTR

retrotransposon insertions found in peach and almond

reference genomes by analyzing re-sequencing data from

10 peach and 10 almond cultivars. This analysis shows

that the LTR retrotransposon insertions are frequently

polymorphic among almond cultivars whereas they often

appear fixed in peach. An analysis of the insertion time

distribution of fixed and polymorphic LTR retrotrans-

posons in both species shows that whereas an impor-

tant number of LTR retrotransposon insertions older

than the estimated speciation time are polymorphic in

almond, peach contains very few old polymorphic inser-

tions, suggesting that they were lost in this species (Fig-

ure S10).

As all these analyses may be somewhat biased by a dif-

ferent degree of assembly of peach and almond genomes,

we performed a detailed analysis of the LTR retrotrans-

poson insertions comparing orthologous loci in both spe-

cies. We were able to unambiguously identify the

orthologous locus for 1155 full-length LTR retrotrans-

poson peach insertions and 1134 almond insertions

(around 51% of the insertions in both species). These cor-

respond to 142 insertions found intact in both species

(conserved insertions), 592 and 440 specific insertions in

peach and almond, respectively, 422 peach insertions par-

tially deleted or rearranged in almond and 562 almond

insertions partially deleted or rearranged in peach. An

analysis of the ages of these LTR retrotransposon inser-

tions belonging to the different categories showed that,

Figure 2. Distribution of gene and transposable element (TE) abundance.

Distribution of gene and TE abundance along Prunus dulcis (a) and Prunus persica (b) chromosomes. Outer to inner tracks represent the coverage per 100 kb of

genes, TEs, Copia long terminal repeat (LTR) retrotransposons, Gypsy LTR retrotransposons, and miniature inverted-repeat transposable elements. The chromo-

some scale is in Mbp. [Colour figure can be viewed at wileyonlinelibrary.com]

© 2019 The Authors.
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as expected, the majority of the specific insertions in both

genomes were younger than the estimated speciation

date. The almond genome contains a larger fraction of

specific insertions that are older, which probably corre-

sponds to elements that were polymorphic in the ancestor

and that were subsequently lost in peach. Also as

expected, the vast majority of the conserved insertions

were older than the estimated speciation time of peach

and almond (Figure S11). In addition, analysis of the pres-

ence of these insertions in peach and almond cultivars

using Pindel (see Experimental Procedures) showed that

while all insertions are fixed in peach an important frac-

tion is polymorphic in almond (Figure 3b).

Transposon-induced variability in peach and almond traits

The almond fruit resembles that of peach and other Prunus

species, the major differences being that in almond the

mesocarp does not develop to produce the fleshy tissue

typical of other Prunus fruit crops, and that the almond

seed does not accumulate the high levels of the

Figure 3. Dynamics of long terminal repeat (LTR) retrotransposons in peach and almond.

(a) Insertion time of complete LTR retrotransposons in Prunus dulcis and Prunus persica.

(b) Insertion time (MYA, million years ago) of polymorphic and fixed orthologous LTR retrotransposons in almond (left) and peach (right). [Colour figure can be

viewed at wileyonlinelibrary.com]

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
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cyanogenic diglucoside amygdalin that renders the seeds

of peach and other Prunus species bitter and toxic. In order

to shed light on the genetic differences underlying these

phenotypic differences we compared the genomic regions

containing the genes known to determine the expression

of these characters in both species.

It has been recently shown that the sweet almond phe-

notype is due to the reduced expression of the genes

encoding two cytochrome P450 enzymes catalyzing the

first steps of amygdalin biosynthesis in sweet almond vari-

eties compared with bitter almond varieties (Thodberg

et al., 2018). It has also been shown that this reduced

expression is not related to differences in the gene

sequence, which points to a difference in the regulation of

the expression of those genes (Thodberg et al., 2018). We

compared the sequence of one of these almond genes,

CYP71AN24, with its homologs in peach, sweet cherry and

P. mume and found that it is highly conserved. However,

CYP71AN24 is flanked by several almond-specific TE inser-

tions, and in particular two MITE insertions in its proximal

upstream region (Figure 4a). A preliminary analysis of the

methylation of this region shows that the almond-specific

TE insertions flanking the CYP71AN24 gene are highly

methylated. The insertion of TEs in the proximal upstream

region of the CYP71AN24 gene may have affected, directly

or indirectly, its expression due to its high methylation. In

addition, the presence of the TEs also correlates with a

much higher methylation of this gene in almond compared

with peach (11.6% methylation at CG and 0.1% methylation

at CHG in almond versus 0.1% methylation at CG and

0.02% at CHG in peach), which may be the result of methy-

lation spreading from the TEs. An analysis of the structure

of this locus in Prunus webbii, a wild species closely

related to almond which produces bitter seeds, and in two

sweet almond cultivars (Cristomorto and Marcona) and

two almond cultivars producing bitter seeds (D05-187 and

S3067) performed by mapping the re-sequencing data of

these genomes to the almond reference genome, shows

that the presence of the TE insertions (and in particular

that of the MITE named TIR2), correlates with the sweet

versus bitter seed phenotype (Figure 4b). Moreover, an

article published after the submission of our research

reports a strong association between the sweet almond

phenotype and a point mutation in a gene (bHLH2) encod-

ing for a bHLH transcription factor that renders it unable to

bind to the promoter of one of these genes, CYP71AN24

(S�anchez-P�erez et al., 2019). An analysis of the sequence of

the genome produced here, the sweet almond Texas, as

well as the mentioned sweet and bitter accessions and

P. webbii shows that this mutation is absent in Texas and,

on the contrary, it is present in P. webbii, being as

expected in the rest of the cases. Additionally, S�anchez-

P�erez et al. (2019) reported that one of the sweet almond

cultivars they analyzed (Atocha), did not have the same

mutation in bHLH2 but had another one in the neighbor-

hood.

The analysis of model plant species, such as Arabidopsis

and tomato, has shown that the development of the fruit is

the result of the combined action of genes involved in

meristem organization, floral development and fruit cell

proliferation and expansion. We selected 97 genes

(Table S17) that belong to gene families involved in these

processes, including WUSCHEL (WUS) and CLAVATA

(CLV) genes whose mutants lead to larger fruits in tomato

and genes known to determine fruit shape (Rodriguez

et al., 2011). We have analyzed the structure of these genes

in peach and almond and found that six of them present

differential TE insertions within the genes in their proximal

(less than 1000 nucleotides) upstream region that probably

contains their promoter. These species-specific TE inser-

tions are all highly methylated and may have altered their

expression (Table S18). In addition to the potential muta-

tion of transcriptional regulatory elements, MITE insertions

could have provided other transcription factor-binding

sites (TFBS), as MITEs have been shown to frequently

amplify and mobilize TFBS in plants (Morata et al., 2018).

DISCUSSION

Using a hybrid strategy based on short and long-read DNA

sequences and the information provided by existing link-

age maps we have assembled the highly heterozygous

genome of almond cv. Texas into a rather complete, con-

tiguous and low-redundant assembly with eight pseudo-

molecules corresponding to the eight chromosomes and

comprising 227.6 Mbp of sequence. Annotation of this

genome has resulted in the identification of 27 969 pro-

tein-coding genes and 6747 non-coding transcripts. The

assembled sequence is highly syntenic with the genome

sequence of peach (Verde et al., 2013), as was expected

considering previous information on the close genetic sim-

ilarity between these two species (Dirlewanger et al., 2004).

Based on molecular data and the use of fossil records of

a diverse sample of 17 plant species we estimated the

divergence times of P. dulcis with respect to other

sequenced Prunus. Our estimate of 5.88 Mya for the diver-

gence of peach and almond from a common ancestor is

similar to that of recent molecular evidence that places this

figure between 5.0 and 8.0 Mya (Yu et al., 2018; Velasco

et al., 2016; Delplancke et al., 2016). This is compatible with

the separation of the ancestral species by the uplift of the

Central Asian Massif in two subpopulations that faced

completely different environments: one (almond and its

close relatives) in the arid steppes of central and western

Asia and the other (peach) in the subtropical climate of

southwestern China, close to where the first fossil endo-

carps were found dated at 2.6 Mya (Su et al., 2015).

In agreement with results from earlier studies of other

sequenced diploid Prunus genomes (Shirasawa et al.,

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
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2017; Verde et al., 2013; Zhang et al., 2012; Baek et al.,

2018) we have not found evidence for any recent whole-

genome duplication of almond. Analysis of duplicated

gene sequences indicates a parallel gene expansion for all

sequenced Prunus species genomes for genes involved in

lignin biosynthesis, such as COMT and HCT. One of the

distinctive aspects of Prunus is that its fruit is a drupe,

characterized by the formation of a strongly lignified meso-

carp (the ‘stone’), unlike most of its closest taxa that have

follicetum and nuculanium as fruit types (Xiang et al.,

2017). These duplications may be at the origin of the

formation of the stone, determine its characteristics and be

crucial to understanding its evolution and possible modifi-

cation, with important consequences for plant breeding,

including the production of stoneless cultivars in Prunus

fruit (Callahan et al., 2015).

As we have shown from the comparison of the peach

and almond reference genomes, as well as the analysis of

the structural variants between both genomes, indel events

seem to explain a substantial part of the divergence of

peach and almond genomes from their common ancestor.

In this study we show that most of such structural

Figure 4. Analysis of the locus of the CYP71AN24 gene in almond varieties and related Prunus species.

(a) Nucleotide conservation of the CYP71AN24 region between Prunus avium, Prunus mume, Prunus persica and Prunus dulcis based on a Mauve multiple

alignment (physical distance scale is in bp). White boxes represent inserted regions in P. dulcis. The Integrative Genomics Viewer (IGV) tracks of the gene and

transposable element (TE) annotations of P. dulcis and P. persica along with their DNA methylation levels in the three different contexts (CG, CHG and CHH) are

shown below.

(b) The IGV spnapshot of the region containing the CYP71AN24 gene and the polymorphic TE insertions displaying the coverages of mapped DNA-seq reads from re-se-

quencingdata of sweet- andbitter-kernelP. dulcis varieties, aswell as from that of the closely relatedPrunuswebbii. [Colour figure canbe viewedatwileyonlinelibrary.com]

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
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differences, particularly those of larger sizes, were related

to TE sequences. The LTR retrotransposons and MITEs

constitute the two most prevalent superfamilies of TEs in

plants (Casacuberta and Santiago, 2003). While the propor-

tion of the almond genome consisting of TEs (38%) was

similar to that of other sequenced genomes of similar size,

that is from 30% in peach (Verde et al., 2013 and 43–47% in

other Prunus species (Shirasawa et al., 2017; Zhang et al.,

2012; Baek et al., 2018) and very similar chromosomal dis-

tributions of TEs were observed for almond and peach,

detailed analysis of the dynamics of LTR retrotransposon

evolution has revealed key aspects of the divergence of

almond and peach genomes after their speciation. In short,

almond has maintained more ancestral LTR retrotrans-

posons, which are still in some cases polymorphic within

the species, whereas peach has lost most polymorphic

ancestral insertions but seems to have witnessed a higher

level of recent retrotransposition activity. The contrasting

data on the polymorphism of ancestral TEs between peach

and almond may be explained by (i) the mating types (self-

ing in peach and outcrossing in almond) and (ii) differ-

ences in their recent history, with a strong reduction of

population size in peach prior to its recent expansion as a

cultivated species 2000 years ago (Velasco et al., 2016),

while almond population sizes remained higher (Yu et al.,

2018). Further analyses should help to clarify this in the

future. In any case, the results presented here suggest that

LTR retrotransposons, and in general TEs, may explain an

important fraction of the interspecific variability between

peach and almond, as well as the intraspecific variability of

both species.

Long terminal repeat retrotransposons are at the origin of

somatic mutations in plant species, some of which have

high agricultural value (Foster and Aranzana, 2018). Only in

peach, white versus yellow fruit color (Falchi et al., 2013),

hairy versus glabrous fruit (Vendramin et al., 2014) and

stonyhard versus melting flesh texture (Tatsuki et al., 2018)

are caused by the action of transposon movement. The

MITE insertions have also been linked to crop traits, such as

sex determination in melon (Martin et al., 2009) or a

drought tolerance phenotype in maize (Mao et al., 2015).

The analysis of almond 9 peach interspecific progeny iden-

tified 11 Mendelian genes explaining the inheritance of

some key agronomic characters: one of them, responsible

for the formation of the thick mesocarp that constitutes the

peach flesh, and another, conferring juiciness to the fleshy

mesocarp, represent major contributions to the difference

between almond and peach fruits (Donoso et al., 2016). Our

results suggest that TEs could be responsible for some of

the genomic changes at the origin of the agronomic traits

that distinguish peach from almond, such as mesocarp

development and bitterness of the kernel. For one of them,

sweet versus bitter kernel, which is essential for the domes-

tication of the almond, we show here that the sweet almond

phenotype correlates with the presence of TE insertions sur-

rounding the gene CYP71AN24. This gene is involved in the

synthesis of one of the key enzymes of the amygdalin path-

way (cytochrome P450), and it has been proposed that its

reduced expression, together with the lack of expression of

CYP79D16, results in the sweet kernel trait (Thodberg et al.,

2018). It has been recently shown that the sweet kernel phe-

notype is closely associated with a point mutation in a bHLH

transcription factor (S�anchez-P�erez et al., 2019). These

authors identified a sweet almond cultivar that did not have

the mutation, and we found two more examples (Texas and

P. webbii) with unexpected genotypes. This shows that,

although there is a good correlation of this mutation in the

bHLH transcription factor gene and the sweet almond phe-

notype (S�anchez-P�erez et al., 2019), this association may

not be perfect, suggesting that other mechanisms to avoid

the activation of CYP71AN24 could contribute to the sweet

kernel phenotype. We propose here that the presence of

highly methylated TE insertions in the close proximity of

CYP71AN24 could help to ensure the low expression of this

gene in the seed tegument of sweet almonds. Additionally,

TEs may be at the origin of other important traits in almond.

We identified six genes related to fruit flesh formation that

also contain highly methylated TEs in their upstream region

in either almond or peach. Although we have not been able

to associate any of these genes with the positions of major

genes or quantitative trait loci described so far in these spe-

cies, they are clear candidates for further studies.

In summary, peach and almond diverged less than 6

Mya, which for a perennial species with a long intergenera-

tional period of around 10 years, is a short evolutionary

time for sequence divergence. Indeed, our results show

that the genomes of peach and almond are highly similar

and only show a mean of 20 nucleotide substitutions per

kb. Our results here show that this relatively low sequence

divergence is accompanied by an important number of

indels frequently resulting from specific TE insertions,

which in some cases could be at the origin of important

almond characteristic traits. The activity of TEs is not con-

stant through evolution, alternating between quiescent

periods and transposition bursts, which, as our results sug-

gest here for almond, could allow for a rapid phenotypic

diversification between closely related species.

The genome sequence of the almond will accelerate

genetic research and facilitate breeding of this species by

providing useful information on genes and markers with

an unprecedented level of detail, as is the case in other

Prunus species (Aranzana et al., 2019). It can also help fur-

ther our understanding of the evolution and domestication

of closely related crop species that share a slower rate of

evolution due to their long intergeneration period, and

may enable the detection of modes and aspects of evolu-

tion that could be different or otherwise difficult to identify

in herbaceous crops (Gaut, 2015).

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
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EXPERIMENTAL PROCEDURES

Extraction of DNA, sequencing and k-mer analysis

Fresh young leaves of the Texas almond were ground in liquid
nitrogen to a fine powder, and 100 mg of ground leaves was used
for DNA extraction using the DNeasy� Plant Mini Kit (Qiagen,
https://www.qiagen.com/) according to the manufacturer’s instruc-
tions. The same method was employed for the extraction of 10
additional almond cultivars (A€ı, Belle d’Aurons, Cristomorto, Des-
mayo largueta, Falsa Barese, Genco, Marcona, Nonpareil, Ripon
and Vivot), eleven peach cultivars (Armking, Belbinette, BigTop,
Blanvio, Catherine, Earlygold, Flatmoon, Nectalady, Platurno,
Sweetdream and Tiffany) and one accession of the wild almond
P. webbii (R755). For sequencing with an Oxford Nanopore Tech-
nologies (ONT; https://nanoporetech.com/) MinION sequencer,
high-molecular-weight DNA from Texas almond was extracted
with the method described by Mayjonade et al. (2016).

Whole-genome shotgun sequencing was performed for Texas
DNA using the Illumina HiSeq2000 sequencing instrument. The
standard Illumina protocol with minor modifications was followed
for the creation of short-insert paired-end (PE) libraries (Illumina
Inc., cat. no. PE-930-1001, https://www.illumina.com/). In brief, three
libraries were generated from > 2.0 lg of genomic DNA each. For
one library the DNA was amplified by PCR while for the other two
libraries (and the majority of the sequence) the DNA was not ampli-
fied in order to reduce GC bias. Then the DNAwas sheared on a Cov-
arisTM E220, the fragmented DNA was size selected on an agarose
gel to obtain three PE libraries with incremental insert sizes of 263,
317 and 354 bp. The fragments were end-repaired, adenylated and
ligated to Illumina indexed PE adaptors. The PE libraries were run
on the of Illumina HiSeq2000 platform in 2 9 101 PE mode accord-
ing to standard Illumina operation procedures. Primary data analy-
sis was carried out with the standard Illumina pipeline (HCS
2.0.12.0, RTA 1.17.21.3). A total of 97 Gb of raw sequence
(>3509 coverage) was produced. Post-processing of sequence
reads involved detection and trimming of Illumina adapter
sequences with cutadapt, quality trimming with trim_galore and PE
overlap detection and merging with FLASH. Mate pair (MP) libraries
of Texas DNA (fragment sizes 3.1 and 5.2 kb) were constructed
according to the Nextera Mate Pair Preparation protocol, which
leaves a linker of known sequence at the junction. The resulting
libraries were run on the HiSeq2000 platform in 2 9 101 bp read
length runs. Post-processing of sequence reads involved detection
and trimming of the Nextera linker sequence with cutadapt, and
quality trimmingwith trim_galore.

Fosmid pools from Texas almond were used to prepare 2D
genomic libraries using the Ligation Sequencing Kit SQK-MAP005/
006 or SQK-NSK007. The sequencing run was performed on an
R7.3 chemistry FLO-MAP103 or R.9 FLO-MIN104 flow cell (ONT)
according to the manufacturer’s recommendations. Genomic DNA
from Texas almond was also used to prepare 1D and 1D2 genomic
libraries using the Ligation Sequencing Kits SQK-LSK108 and
SQK-LSK308, respectively. The sequencing run time on FLO-
MIN106 or FLO-MIN107 flow cells using the MinION/MKI Pk.1
instruments (ONT) was 48 h. The quality parameters of the
sequencing runs were further monitored by the MinKNOW plat-
form, while the run was base-called using the Metrichor agent
(https://metrichor.com) in real time.

For the almond cultivars other than Texas and the peach and
P. webbii accessions, we developed PE libraries of fragment size
300 bp and sequenced them with Illumina as described in the pre-
vious paragraph.

Jellyfish v.2.2.6 (Marc�ais and Kingsford, 2011) was run on the
PE300 library (insert size 317 bp, 2 9 100-nucleotide reads) with
the canonical k-mer (-C) option and a mer-size of 21. Genome
Scope (Vurture et al., 2017) was then used to analyze the resulting
k-mer distribution. The ONT reads were error-corrected using
Canu (v1.5) (Koren et al., 2017). Corrected trimmed reads were
used for hybrid assembly, scaffolding and assembly correction.

Genome assembly

Short-read whole-genome sequence (WGS) assembly of 100 bp
PE read Illumina libraries with AbySS v.1.3.6 (Simpson et al. 2009)
resulted in a fragmented assembly (N50 = 4867 bp) with inflated
genome size (512 Mbp). Heterozygosity and repeats were clearly
going to be a problem. Fosmid-pool sequencing (150/250 nucleo-
tide PE reads) and assembly combining whole-genome sequenc-
ing PE and MP reads as previously described (Abascal et al., 2016;
Cruz et al., 2016) increased contiguity (N50 = 142 kb) and reduced
the assembly size (238 Mbp); however, the resulting assembly
exhibited high levels of discordance with the available genetic
maps, as well as with the peach assembly (v.2.0.1). The final strat-
egy, combining long-read ONT sequencing and whole-genome
sequencing PE reads, resulted in the best balance of contiguity
and concordance with the genetic map.

The hybrid assembler MaSuRCA v.3.2.3 (Zimin et al., 2013) was
run with default parameters (no linking mates; Celera assembly of
super-reads). The input was the two PE Illumina libraries of insert
sizes 317 and 354 bp for a total of 2859 coverage (Table S1) and
the self-corrected ONT reads for a total of about 209 coverage.

Redundans v.0.13 (Pryszcz and Gabald�on, 2016) was run on the
non-deduplicated output of MaSuRCA (the step 9-terminator
genome.ctg.fasta file totaling 470 Mb with N50 = 53 kb) using the
–longreads option for scaffolding, reducing the size of the assem-
bly to 248 211 Mb of which was scaffolded further with the ONT
reads.

A first round of corrections to the assembly was carried out
using consistency with nanopore data as the main criteria. ONT
reads were mapped to the assembly with NGM-LR v.0.2.6 (Sed-
lazeck et al., 2018), the assembly was broken at regions of zero
coverage and then re-scaffolded with SSPACE-LongRead v.1.1
(Boetzer and Pirovano, 2014). A second round of corrections was
made utilizing collinearity with the T9E genetic F2 and BC1 (to
Earlygold) linkage maps (Donoso et al., 2015) as the main crite-
rion, with break points guided by synteny with the peach genome
and coverage of ONT reads. Peach transcripts (annotation
Pp2.01a) were mapped to the almond assembly with GMAP
v.2014-12-23 (Wu and Watanabe, 2005). Marker sequences were
mapped with BWA mem, keeping those mappings with mapping
quality ≥ 20 and identity ≥ 90%. The broken assembly was again
scaffolded with SSPACE-LR. The assembly at this stage had a con-
tig N50 of 99 kb and scaffold N50 of 151 kb.

A third round of corrections was performed with improvements
in mapping and break detection. First, peach transcripts were
mapped only in the sense direction, and second, discrepant mar-
ker mappings were screened for mapping artifacts. Moreover,
Sniffles v.1.0.11 (Sedlazeck et al., 2018) was used for detection of
structural variants. Additional breaks were made and duplicate
sequences were also detected. In the end, we were able to merge
30 Mb with minimus2 from AMOS v.3.1.0 (Sommer et al., 2007;
Treangen et al., 2011) and any remaining duplicate sequence
(>99% identical, >5 kb) was manually reviewed. Overlapping
regions were joined into new longer contigs using nanopore read
mappings to confirm new joins. Also at this stage, the putative
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chloroplast sequence was identified by coverage and homology
and set aside.

Finally, the assembly was anchored to pseudomolecules using
both the T9E genetic map and synteny with the peach genome
using ALLMAPS (jcvi-0.7.3) (Tang et al., 2015), with more weight
given to the map marker order. Remaining conflicts were resolved
manually. ALLMAPS uses a genetic algorithm for placing and ori-
enting scaffolds, and sometimes it does not converge completely
on the optimal solution, even with a large number of generations.
Thus, we had to manually review and fix the order and orientation
of some scaffolds which still exhibited discordance with either the
genetic map or synteny with peach. Further improvement to the
assembly was made by joining adjacent scaffolds if they could be
linked together with split nanopore read mappings. A few addi-
tional overlaps were also detected in this fashion and longer con-
tigs were constructed.

Assembly completeness was estimated in two ways. First, gene
completeness was determined by running BUSCO v.3.0.2 (Sim~ao
et al., 2015) using the embryophyta_odb9 database comprising
1440 single-copy plant orthologous groups (BUSCOs). Second, a
pairwise comparison of k-mers present in both input reads and
the assembly was performed using KAT (Mapleson et al., 2017)
using all whole-genome sequencing PE Illumina reads and a k-
mer length of 27 (Figure S12).

Comparison of the P. dulcis anchored assembly to the

linkage map and peach v.2.0 a1 genome sequence

The almond assembly was compared with the T9E linkage map
that contains 1833 SNP markers (Donoso et al., 2015). Markers
were mapped onto the almond pseudomolecule-based assembly
using BLAST and coordinate data of both almond and peach were
used as input in MapChart software (Voorrips, 2002) for represent-
ing graphically the comparison between the two species. The
genetic and physical distances of SNP markers from the T9E pop-
ulation were used for calculating the recombination rate across
the pseudomolecules of the almond assembly.

The peach genome sequence and annotation data were down-
loaded from the GDR (ftp://ftp.bioinfo.wsu.edu/species/Prunus_per
sica/Prunus_persica-genome.v2.0.a1/). Synteny between almond
with peach genomes was assessed using SyMap software v.4.2
(Soderlund et al., 2006) with default parameters, except that the
‘min dot’ parameter was set to 25.

Annotation

The P. dulcis genome assembly was annotated by combining
transcript alignments, protein alignments and ab initio gene pre-
dictions. A flowchart of the annotation process is shown in Fig-
ure S13. Scripts are available at https://github.com/jesgomez/
annotation_pipeline.

First, almond RNA-seq reads were downloaded from NCBI with
the accession number SRR1251980 and aligned to the genome
with STAR (v.2.5.3a) (Dobin et al., 2013). Transcript models were
subsequently generated using Stringtie (v.1.0.4) (Pertea et al.,
2015) and, along with the P. persica transcriptome (annotation
Pp2.0a) and 4509 almond expressed sequence tags downloaded
from NCBI on July 2015, were assembled into a non-redundant
set by PASA (v.2.3.3) (Haas et al., 2008). The TransDecoder pro-
gram, which is part of the PASA package, was run on the PASA
assemblies to detect coding regions in the transcripts. Second, the
complete Rosaceae proteome was downloaded from Uniprot on
July 2015 and aligned to the genome using Exonerate (v.2.4.7)
(Slater and Birney, 2005). Third, ab initio gene predictions were

performed on the repeat masked pdulcis26 assembly with three
different programs: GeneID v.1.4 (Alioto et al., 2018), Augustus
v.3.2.3 (Stanke et al., 2006) and GeneMark-ES v.2.3e (Lomsadze
et al., 2014) with and without incorporating evidence from the
RNA-seq data. Finally, all the data were combined into consensus
coding sequence models using EvidenceModeler-1.1.1 (EVM)
(Haas et al., 2008). Additionally, untranslated regions and alterna-
tive splicing forms were annotated through two rounds of PASA
annotation updates.

Non-coding RNAs were annotated as follows: first, the program
cmsearch v.1.1 (Cui et al., 2016) from the INFERNAL package
(Nawrocki and Eddy, 2013) was run against the RFAM (Nawrocki
et al., 2015) database of RNA families (v.12.0). Also, tRNAscan-SE
v.1.23 (Lowe, 1997) was run to detect the transfer RNA genes pre-
sent in the genome assembly. To annotate long non-coding RNAs
(lncRNAs) we first selected PASA assemblies that had not been
included in the annotation of protein-coding genes. Those longer
than 200 bp and whose length was not covered to at least 80% by
a small ncRNA were incorporated into the ncRNA annotation as
lncRNAs. The resulting transcripts were clustered into genes using
shared splice sites or significant sequence overlap as criteria for
designation as the same gene.

Functional annotation. Functional annotation was performed
by integrating several data sources to infer protein function based
on sequence similarity to annotated sequences or/and the pres-
ence of particular domains and sequence motifs. We used the
InterPro (Hunter et al., 2012), KEGG (Kanehisa et al., 2012), signalP
(Petersen et al., 2011) and NCBI CDsearch (Marchler-Bauer et al.,
2011) databases. InterProScan v.5.19-58 (Zdobnov and Apweiler,
2001) was used to scan though all available InterPro databases,
including PANTHER, Pfam, TIGRFAM, HAMAP and SUPERFAMILY.
Initial sequence similarity search was determined using BLASTP
v.2.6.0 + against the NCBI non-redundant (NR) collection of pro-
tein sequences (release 2018-08). KEGG orthology (KO) groups
were assigned by the KEGG Automatic Annotation Server (KAAS)
(Moriya et al., 2007) using the bi-directional best hit (BBH) method
against a representative gene set from 27 different species, which
includes a core set of species for gene annotation and additional
plant species from the Rosaceae family. The KO identifiers were
then used to retrieve the relevant KEGG functional annotation
using the KEGG REST-based API service, KEGG release v.87.1.

To predict plant disease resistance genes, each protein was
searched against a manually curated list of ‘reference’ R-genes
with the DRAGO pipeline (Sanseverino et al., 2013). For each hit,
classes were assigned based on combination of specific domains,
such as TIR, nucleotide-binding site (NBS), leucine-rich region
(LRR) or coiled-coil domain. Putative transcription factor genes
were predicted using the Plant Transcriptional Factor database
(Jin et al., 2017) v.4.0

Annotation and analysis of transposable elements in gen-

ome assemblies. The Ilumina PE reads corresponding to the
re-sequencing of the almond and peach cultivars described in sec-
tion "DNA extraction, sequencing and K-mer analysis" were
trimmed with SKEWER (v.0.2.2, –mean-quality 25, –min 35) and
aligned to their respective reference genome with BWA-aln/
sampe1 (v.0.7.5, parameters: -t 6, -n 5, -o 1, -e 3) (Li and Durbin,
2009) and SAMTOOLS (v.0.1.18) (Li, 2011). Bam files were later
submitted to the package PINDEL (v.0.2.5, parameters: -T 4, -x 5, -r
false, -t false, -A 35) (Ye et al., 2009) to identify deletions in sam-
ples. The TEs were annotated in P. dulcis and P. persica assem-
blies using TEdenovo and TEannot pipelines of the REPET
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package (Quesneville et al., 2005; Flutre et al., 2011) installed in
the PiRATE virtual machine (Berthelier et al., 2018). Classification
of TEdenovo consensus sequences at the order level was done
with PASTEC (Hoede et al., 2014).

Annotation of TEs for masking purposes was done using
RepeatMasker (http://www.repeatmasker.org/) with a reduced TE
representative library. The TE representatives obtained using the
TEdenovo pipeline library were screened for coding domains with
hmmscan (HMMER 3.1b1, http://hmmer.org/) against the PFAM
database (Finn et al., 2016). The TE representatives containing
regions potentially coding for known domains of non-TE proteins
usually found in multigene families (kinases, NB-ARC, LRR, TIR) or
with an N content higher than 30% or with length shorter than 200
nucleotides were discarded. Moreover, all TE representatives not
categorized in one of the classical TE superfamilies (defined as
‘noCat’ by TEdenovo) were also removed. A total of 661 represen-
tatives were removed from the library. The final library contained
6898 TE representatives.

MITE-hunter (Han and Wessler, 2010) was run to detect poten-
tial MITE families. In order to complete the annotation, the
potential almond MITE families were combined with the P. per-
sica family annotation available in the PMITE database (families
carrying target site duplication) (Chen et al., 2014). These
sequences were grouped in clusters of 90% identity with cd-hit
(Fu et al., 2012) to remove redundancy and produce a final
library of family representatives. RepeatMasker (http://www.
repeatmasker.org/) was run to annotate all regions having signif-
icant similarity to MITE families, and the results were filtered to
retain only full-length elements (consensus length � 20%). The
same pipeline was used to identify MITEs in the P. persica
assembly.

Candidate LTR retrotransposons were predicted by running
LTRharvest (Ellinghaus et al., 2008) with default parameters. The
internal conserved domains of these elements were identified
using HMMER hmmscan (Johnson et al., 2010) and only coding
elements were retained for further analyses. Elements displaying
either a single hit on the genome, more than 10% of gaps or more
than 50% of tandem repeats were filtered out. Classification of the
remaining elements (hereafter referred to as ‘coding LTR retro-
transposons’) into Copia and Gypsy superfamilies was performed
based on the order of the internal coding domains, as defined by
Xiong and Eickbush (1990). Elements lacking one or more
domains were tagged as ‘incomplete’.

The LTR regions of every coding element were extracted and
aligned with MUSCLE (Edgar, 2004). The Kimura two-parameter
distance of every aligned LTR pair was calculated and used to esti-
mate insertion ages following the approach described in (SanMi-
guel et al., 1998), using a substitution rate of 10�8 nucleotides per
site per year and a generation time of 10 years (Velasco et al.,
2016).

The flanking sequences (500 bp) of every coding LTR retrotrans-
poson were extracted from P. dulcis and used as query for a
BLASTn (Altschul et al., 1990) search (cutoff E-value < 10–10)
against the P. persica assembly, and vice versa. Concordant
mapped flanks were defined when both flanks of an element
mapped in the same scaffold at a distance smaller than 25 kb.
Every internal region between two concordant mapped flanks was
aligned to the putative orthologous element using EMBOSS Nee-
dle (Rice et al., 2000). The two elements were considered ortholo-
gous if they could be aligned over 80% of their length with at least
80% identity. To assess the orthology of MITE insertions the
approach followed was as the one described for LTR retrotrans-
posons except that the sequences flanking the insertions were

mapped to the corresponding genome using BBmap (https://sour
ceforge.net/projects/bbmap/) instead of Blast.

In order to search for polymorphic LTR retrotransposon and
MITE insertions within or close to genes we used BEDTools
(v.2.27.0) (Quinlan and Hall, 2010). Only those TEs located within
genes or at less than 1000 nucleotides upstream of a gene were
kept.

Analysis of DNA methylation in almond and peach

Genomic DNA (1.5–2 lg) from young leaves of P. dulcis (cv. Tex-
as) and P. persica (cv. Earlygold) was spiked with unmethylated
bacteriophage k DNA (5 ng of k DNA/lg of gDNA; Promega,
https://www.promega.com/) and with methylated T7 phage DNA
(5 ng of T7 DNA lg–1 of gDNA). The gDNA was sheared on a Cov-
arisTM E220 and fragments of 150–300 bp were size-selected using
AMPure XP beads (Beckmann Coulter, Brea CA, USA). The
libraries were constructed using the Kapa Library Preparation kit
(Roche Kapa Biociences, Pleasanton CA, USA) for short-insert
paired-end libraries for Illumina with some minor modifications.
After ligation of the NEXTFLEX� Bisulfite-Seq Barcodes (Perkin
Elmer, https://www.perkinelmer.com/) the library was treated with
sodium bisulfite using the EpiTect Bisulfite Kit (Qiagen), following
the manufacturer’s instructions for formalin-fixed, paraffin-embed-
ded tissue samples. Two rounds of bisulfite conversion were per-
formed to ensure a conversion rate of over 99%. Enrichment for
adaptor-ligated DNA was carried out through seven PCR cycles
using KAPA HiFi Uracil + DNA Polymerase (Kapa Biosystems,
https://www.kapabiosystems.com/). Library quality was monitored
using the Agilent 2100 Bioanalyzer, and the library concentration
was estimated using quantitative PCR with the library quantifica-
tion kit from Roche Kapa Biosystems. Paired-end DNA sequencing
(2 9 101 + 8 bp) was then performed using the HiSeq2500 (Illu-
mina) following the manufacturer’s protocol. Image analysis, base
calling and quality scoring of the run were processed using the
manufacturer’s software Real Time Analysis (RTA 1.18.66.3) and
followed by generation of FASTQ sequence files. Raw reads were
trimmed with TrimGalore! v.0.4.5 (http://www.bioinformatics.bab
raham.ac.uk/projects/trim_galore/). Low-quality bases (Phred
score < 20) were trimmed before adapter removal and reads with
a length less than 20 were discarded. The total of trimmed reads
was 82 073 678 and 94 040 426 in almond and peach, respec-
tively. Trimmed reads of each species were mapped to their
respective reference genome and methylation was analyzed using
Bismark v.0.19.1 (Krueger and Andrews, 2011). The gene/TE
methylation was analyzed with SeqMonk v.1.41 (http://www.bioinf
ormatics.babraham.ac.uk/projects/seqmonk/). Only cytosine posi-
tions that had been sequenced at least three times were included.

Analysis of the CYP71AN24 locus in almond cultivars and

Prunus-related species

A 2-Mb region of the P. dulcis genome containing the CYP71AN24
gene was compared with the corresponding genomic regions of
P. avium, P. mume, P. persica using Mauve (Darling et al., 2004).
Re-sequencing data from the P. dulcis cultivars Texas, Marcona,
Cristomorto, D05-187 (SRX245830) and S3067 (SRX245832), as
well as from P. webbii (R755), were mapped to the almond refer-
ence genome using BWA aln/sampe (Li and Durbin, 2009).

Prunus dulcis phylome reconstruction

The P. dulcis and P. persica phylomes, that is the complete collec-
tion of evolutionary histories of all encoded genes, were recon-
structed using the PhylomeDB pipeline (Huerta-Cepas et al., 2011).
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In brief, for each protein-coding gene in the almond and peach
genome we searched for homologs (Smith–Waterman Blast
search, E-value cutoff < 1 9 10–5, minimum contiguous overlap
over the query sequence cut-off ≥ 50%) in a database containing
the proteomes of 17 species with sequenced genomes represent-
ing most of the important plant families (Table S3). The most sim-
ilar 150 homologs were aligned using three different programs,
MUSCLE (Edgar, 2004), MAFFT (Katoh et al., 2009) and KALIGN
(Lassmann and Sonnhammer, 2005), in forward and reverse orien-
tation. These six alignments were combined using M-COFFEE
(Wallace et al., 2006) and trimmed with trimAl v.1.3 (Capella-
Guti�errez et al., 2009), using a consistency cut-off of 0.16667 and a
gap threshold of 0.1. Phylogenetic trees were built using a maxi-
mum likelihood approach as implemented in PhyML v.3.0 (Guin-
don and Gascuel, 2003) using the best fitting model among seven
different ones (JTT, LG, WAG, Blosum62, MtREV, VT and Dayhoff).
The model best fitting the data was determined by comparing the
likelihoods estimated on an initial neighbor joining tree topology
and using the Akaike information criterion. In all cases we used
four rate categories and inferred the fraction of invariant positions
and rate parameters from the data. Then, these phylomes were fil-
tered to remove the gene trees that contain proteins associated
with transposon-related functional terms. All alignments and trees
are available for browsing or download at PhylomeDB with the
PhylomeID 406 (almond phylome) and 407 (peach phylome)
(Huerta-Cepas et al., 2014) (http://www.phylomedb.org/).

Prediction of orthology and paralogy and detection of gene

duplications. Orthology and paralogy relationships were pre-
dicted based on phylogenetic evidence from the almond and
peach phylomes. We used ETE v.3 (Huerta-Cepas et al., 2010) to
infer duplication and speciation relationships using a species
overlap approach and a species overlap score of 0. In brief, the
algorithm traverses the tree from the tip to the root and, for each
node, evaluates whether the two daughter branches contain genes
from the same species, in which case a duplication is inferred,
and the genes in each of the two splitting branches are considered
paralogous to each other (Gabald�on, 2008). The relative age of
detected duplications was estimated using a phylostratigraphic
approach that uses the information on which species diverged
before and after the duplication node (Huerta-Cepas and
Gabald�on, 2011). Duplication frequencies at each node in the spe-
cies tree were calculated by dividing the number of duplications
mapped to a given node in the species tree by all the gene trees
that contain that node. To calculate duplication frequencies we
excluded gene trees that contained large (more than five paralogs)
species-specific expansions (expansions that contained more than
five members). This filter is applied to avoid the contribution of
transposon-related gene families or pseudogenes present in the
other analyzed genomes. For the rest of the analyses all duplica-
tions were considered. All orthology and paralogy relationships
are available through PhylomeDB (Huerta-Cepas et al., 2014).

Gene Ontology term enrichment analysis was performed using
FatiGO (Al-Shahrour et al., 2007). We compared three lists of pro-
teins against all the other proteins encoded in the genome. The
three lists were composed of the proteins involved in a duplication
at the ancestral node of all Prunus species, the proteins specifically
lost in almond and the proteins specifically lost in peach.

The trimmed alignments of 262 genes that had single-copy
orthologs in the 17 species considered were selected and concate-
nated. The final alignment containing 141 911 amino acid posi-
tions was used to reconstruct the maximum likelihood species
tree with PhyML v.3.1 (Guindon et al., 2010) using the LG amino

acid substitution model and 100 bootstrap replicates. Additionally,
a super-tree was reconstructed using all trees in the phylome and
a gene tree parsimony approach as implemented in duptree
(Wehe et al., 2008).

Divergence dates were estimated on the topology derived from
the maximum likelihood approach by using the Bayesian relaxed
molecular clock approach as implemented in PhyloBayes v.4.1c
(Lartillot et al., 2013). An uncorrelated relaxed clock model was
applied, and four fossil constraints specified to the most recent
common ancestor: Prunus (47.8 Mya; Li et al., 2011), Rosaceae
(98.25 Mya; Crepet and Nixon, 1996; Zhang et al., 2017), the split
between Fagales and Cucurbitales (84 Mya; Herendeen et al.,
2002; Sims et al., 2002; Wikstr€om et al., 2001), Eudicots (124 Mya;
Hughes and McDougall, 1990). These calibration constraints were
used with soft bounds (Yang and Rannala, 2006) under a birth–
death prior, and a prior on the root of the tree (183 Mya; Bell
et al., 2010). Two independent Markov chain Monte Carlo chains
were run for 20 000 cycles, sampling posterior rates and dates
every 10 cycles. The initial 25% were discarded as burn-in. Poste-
rior estimates of divergence dates and associated 95% credibility
intervals were then computed from the remaining samples of each
chain.

Re-sequencing of almond cultivars and comparison of

almond–peach structural genome variability

Genetic variability analysis was performed on 10 traditional
almond cultivars and one peach cultivar, Earlygold, that was used
as an outgroup. These accessions were re-sequenced using PE
Illumina sequencing as described before. Selection of the almond
lines was based on their origin as representing a range of the
major areas of production in Europe (France, Spain, Italy) and the
USA, and morphological characteristics (shell hardness, bloom
time and self-incompatibility) (Table S8).

The PE Illumina sequencing data from the almond cultivars were
trimmed (length ≥ 35 bp, mean sliding window of 4 bp, phred qual-
ity score ≥ 20) using Trimmomatic (Bolger et al., 2014). and the out-
put was quality checked using FastQC (https://www.bioinformatic
s.babraham.ac.uk/projects/fastqc/). Trimmed data were aligned
against the almond assembly using the BWA-MEM algorithm
v.0.7.16a-r1181 (http://bio-bwa.sourceforge.net/bwa.shtml) with
default parameters. After removal of unmapped reads, PCR dupli-
cates and reads with mapping quality < 10 we obtained the subset
of ‘clean’ reads used for variant calling, which was performed with
Samtools v.1.5 (Li, 2011) with default parameters, except from the
following: -q 10 -Q 20. Commands for trimming, alignment, bam fil-
tering and variant calling can be found in the github repository
(https://github.com/kostasgalexiou/sample-processing.git). Variant
calling format (VCF) files were filtered by applying the following cri-
teria: global quality ≥ 30, genotype quality ≥ 30, 8 ≤ depth ≤300,
biallelic sites, minor allele frequency (MAF) ≥ 0.1. Graphical repre-
sentation of variant distributions was done with Circos (Krzywinski
et al., 2009) in non-overlappingwindows.

Large deletions between almond and peach re-sequencing data
were identified using Pindel (Ye et al., 2009) using default parame-
ters and an insert size of 300 bp for all samples. Peach- and
almond-specific deletions were obtained by selecting positions
with at least 20 reads/cultivar supporting the event. We also
removed deletions that overlapped with N-regions (�1000 bp) in
the almond genome. For detecting variants that overlap with TEs,
we considered that a position overlaps with a TE if at least one of
the two elements, the deletion or the TE, had at least 80% of its
sequence overlapping with the other element.
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Prunus dulcis contigs were aligned to the P. persica reference
genome using Nucmer from the Mummer3 package (Delcher
et al., 2003). Assemblytics (Nattestad and Schatz, 2016) was used
to filter the alignment and detect genome-wide variants with the
following cut-offs: unique sequence length required for consider-
ing an alignment = 10 000 bp, minimum variant size = 20 bp,
maximum variant size = 25 000 bp. Structural variants were inter-
sected with TE annotations of P. dulcis (insertions and repeat
expansions) and P. persica (deletions and repeat contractions). A
variant was considered to be TE-associated when at least 50% of
its sequence was spanned by a TE.

DATA AVAILABILITY

Raw Illumina reads for the four peach cultivars (Bigtop,

Earlygold, Platurno and Sweetdream), the 10 almond culti-

vars (A€ı, Belle d’Aurons, Cristomorto, Desmayo largueta,

Falsa Barese, Genco, Marcona, Nonpareil, Ripon, Vivot)

and one P. webbii are available at the European Nucleotide

Archive (ENA) under the study with a primary accession

PRJEB32985 and corresponding experiment IDs

ERX3390856-ERX3390868 (10 almond cultivars; there are

two entries for Ai, Belle d’Aurons and Desmayo largueta

due to double Illumina runs), ERX3391776-ERX3391779

(four peach cultivars) and ERX3391780 for P. webbii. Raw

Illumina data for the seven peach cultivars (Armking, Belbi-

nette, Blanvio, Catherine, Flatmoon, Nectalady and Tiffany)

were downloaded from SRA, corresponding to the SRA

accessions ERS1801609-ERS1801614 and ERS1801617.

Raw Illumina data for almond cultivars D05-187 and S3067

were downloaded from SRA with the corresponding acces-

sion IDs of SRX245830 and SRX245832. Sequencing reads

and assembly data of P. dulcis cv. Texas are available via

the ENA (PRJEB32994). The assembly and annotation are

additionally accessible via the Genome Database for Rosa-

ceae (https://www.rosaceae.org/analysis/295) and the

CNAG-CRG (http://denovo.cnag.cat/almond).
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